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Specifying leg placement is a key element for legged robot control, however currentmethods for
specifying individual leg motions with human-robot interfaces require mental concentration and
the use of both arm muscles. In this paper, a new control interface is discussed to specify leg
placement for hexapod robot by using finger motions. Two mapping methods are proposed
and tested with lab staff, Joint Angle Mapping (JAM) and Tip Position Mapping (TPM). The TPM
method was shown to be more efficient. Then a manual controlled gait based on TPM is
comparedwith fixed gait and camera-based autonomous gait in aWebots simulation to test the
obstacle avoidance performance on 2D terrain. Number of Contacts (NOC) for each gait are
recorded during the tests. The results show that both the camera-based autonomous gait and
the TPM are effectivemethods in adjusting step size to avoid obstacles. In high obstacle density
environments, TPM reduces the number of contacts to 25% of the fixed gaits, which is even
better than some of the autonomous gaits with longer step size. This shows that TPM has
potential in environments and situations where autonomous footfall planning fails or is
unavailable. In future work, this approach can be improved by combining with haptic
feedback, additional degrees of freedom and artificial intelligence.

Keywords: human-robot interaction, legged robots, data glove, teleoperation, integrated planning and control,
obstacle avoidance

1 INTRODUCTION

Many robots are designed for environments that are too dangerous or remote for humanworkers. However,
the more complex and dangerous the task is, the more likely human oversight will be needed to handle
unexpected situations. Thus, while many legged robots are ideal mechanically for mobility on irregular
terrain (Hunt et al., 2011; Taylor et al., 2008; Sartoretti et al., 2018), controlling legs with autonomous gaits
can limit adaptability potential of these robots. While autonomous gaits are improving due to artificial
intelligence (Sartoretti et al., 2019) and bio-inspiration (Hunt et al., 2017, 2014) sometimes the human
operator needs to intervene (Wang et al., 2015; Prasanga et al., 2019), a process which can be challenging and
tedious. Naive or minimally-trained operators can be safer andmore effective robot users with intuitive user
control interfaces that allow them to specify individual leg motions (Elliott et al., 2016). Here, our goal is to
show that specifying leg motions using finger motions on one hand is feasible, as shown in Figure 1.
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This will be especially important for human-robot teams. For
example, if the human operator is an expert in a particular
environment, direct teleoperation (He et al., 2017) will be needed
if the human can recognize obstacles better than the robot can.
However, without an intuitive user interface, it can be wearying
(Huang et al., 2021) to control each joint to walk for long distances.

This paper introduces a hand-to-hexapod control interface
(HHCI) with aims to reduce user effort, while specifying leg
positions. The user’s hand motions will be tracked with a
wearable device. The advantage of wearable hardware as
opposed to soft gloves or camera tracking of the hand is that,
later, it can be augmented with haptic feedback.

This is novel compared to current methods for controlling
hexapod robots. For hexapod robots (Bjelonic et al., 2016; Franchi

et al., 2012; Carpentier and Mansard, 2018; Grezmak et al., 2021;
Graf et al., 2019; Graf et al., 2021), a simple control interface like
joystick or arrows on a keyboard (Kurisu, 2011) is easy and
intuitive for the operator to control the locomotion velocity,
direction, attitude or even step size, as pictured in Figure 2A.
However, both these control interfaces can only control the robot
to do pre-programmed motions. In operation, the pre-
programmed commands may be too general. For example,
detailed control may be desired to step on a specific spot, use
a foot to shift objects to make a path in a cluttered area, or brace
with a non-end-effector (e.g., a “knee”) in a confined space. A
complicated control interface, like a scaled model of the robot
(Mae et al., 2017), provides complete and direct control over the
robot legs, as pictured in Figure 2B. The disadvantage is that it

FIGURE 1 |Hexapod robots (left) and human hands (right) have similarities that can be convenient for user interfaces. For example, a usermight want to use a single finger to
lift a single leg of this crab-like hexapod (Bjelonic et al., 2016; Franchi et al., 2012; Carpentier and Mansard, 2018; Grezmak et al., 2021; Graf et al., 2019; Graf et al., 2021).

FIGURE 2 | Different control interfaces for hexapod locomotion control (A) A joystick control interface (Kurisu, 2011) is easy to use for indicating general direction of
walking, but would be frustrating if trying to have robot step in particular spots (B) Haptic device interfaces (Huang et al., 2021) provide helpful feedback to the user, but
require large armmovements of both arms (C) A scaled model (Mae et al., 2017) enables detailed control of each joint but would be slow and tiring to move each joint (D)
Our proposed HHCI enables precise placement of feet with small finger motions on one hand.
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requires excessive attention and operation from the operators.
During locomotion control, the operators have to move their
hands to adjust different scale model leg joints, while at the same
time analyzing the environment. This can distract the operators,
increase the mental demand and decrease the control efficiency.

Haptics are promising because users can feel the terrain
through the force feedback and adjust the gait, which aids
balance when walking in 3D terrain. Current haptic devices
being applied in teleoperation of legged robots include
Phantom Omni (DelftHapticsLab, 1994; Barros et al., 2015;
Huang et al., 2019) and Touch 3D stylus (Hoshino et al.,
2018; Protocom, 2022). With one device paired with one
tripod gait group, the operators are able to control the
movement of robot legs (Huang et al., 2021), as shown in
Figure 2C. Since the operators grasp these devices like a pen,
both gross and fine motor of each arm can be performed and
translated to the relevant tripod. However, the movement of arms
can increase the physical activity and effort. A second
disadvantage is that the operator must devote both arms to
the full operation of the robot, which may limit multiple
parallel operations. Our proposed HHCI could someday
incorporate haptic feedback in a one-hand device, leaving the
second arm free.

A specific kind of glove is needed to map finger motions
directly to leg motions that is different from other data gloves that
have been developed for robotic control. In the literature, there
are two methods for capturing finger motion with gloves. One is
detecting the operators finger flexion (the joint angles of the
hand), which is typically done with soft gloves (O’Flynn et al.,
2013; Kessler et al., 1995) that characterise gestures. However,
incorporating rigid elements can make these measurements more
precise (Chen et al., 2020). The difference in our work is that
rather than characterizing gestures that correspond to pre-
programmed actions (Chen et al., 2015; Liu et al., 2016), the
goal is to directly control individual legs and determine whether
that can be sufficient for tasks like obstacle avoidance. The second
method is to measure finger tip motions. For example, hardware
gloves provide haptic feedback at fingertips in Virtual Reality
environments (Gu et al., 2016; Friston et al., 2019). Here, the
component being controlled in virtual reality is not a human
hand but a robot leg, and our hypothesis is that having a physical
leg model attached to the user’s hand is helpful in improving
control efficiency.

In this paper, as shown in Figure 3, a HHCI is proposed to
take advantage of the similarities in structure between a human
finger and the three degree of freedom (DOF) leg of a hexapod
robot. Users are able to directly control the leg movements of a
hexapod robot with finger movements. Two different gloves with
different mapping methods, Joint Angle Mapping (JAM) and Tip
Position Mapping (TPM), are tested and compared to find out
which mapping method is more efficient in specifying hexapod
leg placement. The glove with better efficiency (TPM) is then
tested in a task-based simulation. The test environment was built
in Webots simulator, in which operators are asked to control the
robot to perform a sideways walk and avoid obstacles. Then the
results are compared with fixed gaits and camera-based
autonomous gaits to evaluate the performance of the HHCI.

In the end, the advantages of HHCI are clearest in challenging
cluttered environments, where they are comparable to
autonomous gaits. Since autonomous gait may fail to traverse
many environments, it is important to have user interface
alternatives. This work is the first to introduce HHCI, which
can be more broadly applied to many legged robot tasks in future
to improve robot usability and adaptability.

2 MATERIALS AND METHODS

The goal of our glove is to relate motions of a common hexapod
leg to finger motions. A common robot leg design has three joints
(Graf et al., 2019, 2021; Wooden et al., 2010; Boston Dynamics,
2022; Michael, 2012; Hwangbo et al., 2019; Darling, 2015;
Sartoretti et al., 2018; Coelho et al., 2021), as shown in
Figure 3: a hip joint with vertical axis of rotation, a knee
joint, and an ankle joint with parallel axes of rotation. Just like
one robot leg has three joints, there are three joints on one finger:
the metacarpophalangeal joint (MCP), the proximal
interphalangeal joint (PIP) and the distal interphalangeal joint
(DIP) (Jones and Lederman, 2006; Palastanga and Soames, 2011;
Wheatland et al., 2015). There are three segments on one finger:

FIGURE 3 | The joints in a hand (above) are mapped with kinematics to
control the legs of a hexapod robot (below). Legs are divided into two groups
to perform tripod gait in sideways walking. Left-Front leg (LF), Left-Back leg
(LB) and Right-Middle leg (RM) are in Tripod 1. Right-Front leg (RF),
Right-Back leg (RB) and Left-Middle leg (LM) are in Tripod 2.
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the proximal phalanges, the middle phalanges, the distal
phalanges. For human fingers, the MCP has two DOF. The
abduction and adduction movement of MCP corresponds to
the movement of the robot’s hip joint. During flexion and
extension movement, the motion of the proximal phalanges
on human hand is similar to the desired motion of the tibia
on the robot. Thus, the flexion and extension movement of MCP
corresponds to the movement of the robot’s knee joint. The robot
the has one additional flexion joint, the ankle joint, which will be
controlled by the human PIP and DIP movements. The limited
flexibility of DIP and the coupling with PIP makes it almost
impossible for DIP to control the ankle joint without PIP. With
PIP occupied, MCP is the only joint which can correspond to the
knee joint.

For this work, we will focus on planar sideways walking, so
that we only need to track two finger joints. Prior research has
evidenced that sideways walking is faster and more efficient than
forward walking for a hexapod robot (Yang Chen et al., 2021).
Furthermore, compared to sideways walking, forward walking
requires frequent movement of hip joints, which corresponds to
the abduction and adduction movement of MCP. However, the
abduction and adduction angles of MCP are limited, and frequent
abduction and adduction movement can cause discomfort to the
operator, leading to a faster muscle fatigue. In contrast, sideways
walking canmake full use of the flexibility of fingers in flexion and
extension without making the operators feel uncomfortable.
Therefore, the glove only detects flexion and extension
movements of the fingers, leaving abduction and adduction
tracking for future work.

There are multiple ways to map finger movement to the robot
legs to take into account the differences in kinematics between
hands and the robot (Friston et al., 2019; Wang et al., 2019; Chen
et al., 2015; Napier, 1956; Taylor and Schwarz, 1955; ElKoura and
Singh, 2003; Haken et al., 1985). For the crab robot model used in

our lab, the dactyl will be 60% longer than the tibia while human
hands have variability in the lengths of the three segments with
the last two joints being coupled. In this research, two mapping
methods are considered. To compare, two gloves are designed, as
shown in Figure 4 and Figure 5. Both gloves are fixed on the
operator’s hand by an elastic band with Velcro.

2.1 Glove 1: JAM Glove
Glove one is for joint angle mapping (JAM). The goal is to use the
finger angles to directly set the robot joint angles. The MCP will
correspond to the knee joint motion. The ankle joint will
correspond to the PIP rather than the DIP motion because
although they are coupled, the PIP has better flexibility and
larger work space than DIP. Thus, The fingertips of Glove one
are fixed on the middle phalanges of the operator through 3D
printed rings and finger straps. The movement is detected by
potentiometers, whose voltages will be recorded and used to
calculate the flexion and extension angles of MCP and PIP
through inverse kinematics. In this way, the user is able to
control the robot joints by mapping the finger joint angles
directly to the robot leg joint angles.

2.2 Glove 2: TPM Glove
Glove 2 is for tip position mapping (TPM). Here, the DIP
motion is included because total flexion is captured at the finger
tip. The finger tips of Glove 2 are fixed on the distal phalanges of
the operator through 3D printed rings and finger straps. The
movement is detected by flex sensors, whose voltages are
recorded and used to calculate the resulting finger tip
position through forward kinematics. Inverse kinematics are
applied to get the corresponding robot joint angles for the legs.
The user is able to control the robot foot tip positions by
mapping the finger tip positions directly to the robot foot tip
positions.

FIGURE 4 |Glove one is designed for Joint Angle Mapping (JAM) (A) The design consists of (1) Elastic band (2) 3D printed base. (3) 3D printed Finger Segment 1. (4)
3D printed Finger Segment 2. (5) Linear Rotary Potentiometer (PT10MH01-103A2020-S, 10 kΩ, 0.15W) (6) 3D printed finger attachment support (7) Finger Straps (B)
The user wears the glove to measure MCP and PIP flexion.
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For the TPM Glove, the user can visualize the robot’s leg by
looking at the hardware dactyl attached to the finger, which has the
same proportions as the robot’s leg. In contrast, for the JAM Glove,
the leg motions correspond more directly to the operator’s finger.

Two quantitative tests are performed to select which type of
glove will be used.

2.3 Precision Test Set-Up
The precision test is used to check whether the sensor’s value is
consistent during repeatable movement. According to tests made
by other researchers (Roy et al., 2015; Glauser et al., 2019), a
standard deviation and mean error within 10°is precise enough
for a glove’s sensor. The test made by Oliver G (Glauser et al.,
2019).shows that the ManusVR glove has a mean error of
11.93°and the CyberGlove 10.47°.

During the test, the glove is not worn, but rather the base is
fixed on a platform of fixed height. Reference positions A and B
are marked on a paper template and the glove fingers are moved
to these twomarks. At position A, the foot is taped to themark. At
rest, the sensor voltages are sampled 20 times with MATLAB.
Then the finger tip is moved to position B, and the sensors are
read again. The test is repeated 20 times, recording 400 values for
each sensor on each position. the mean and standard deviation of
all recordings of each sensor on each position are calculated. A
glove with lower standard deviation values and mean error can be
considered as the glove which is more stable and precise in
recording values of repeated positions.

2.4 Interaction Efficiency Test Set-Up
Next, it is important to compare performance when a human user is
added to the control loop. This is different from the previous
precision test, because the human user can adjust the position of
their finger to achieve a desired result in real time (Yanco et al., 2015).

Here, we will measure how quickly and accurately the user can
get a single simulated leg into position. This test is a simplified
simulation of sideways walking control for hexapod robot, in which

specified leg placement is required. 15 lab staff were invited to the
test, using their index fingers to control a simulated robot leg with
both gloves to reach a certain target position on the simulated
ground, shown as Figure 6. All the staff are new to the gloves and
have never been trained before. One full test of each glove consists of
a sequence of 15 randomly generated target positions. Once the
robot foot tip crosses the ground line or touches the target, the trial
will be ended and the target position will be refreshed.

The efficiency is quantified in two dimensions. The first
dimension is the time spent. The time for each trial reflects
the effort and frustration during operation. The less time spent
means the less effort required and the less frustration during
operation, in other words, it is easy to operate. The second
dimension is the distance between the target and the final foot
tip position. Errors in distance reflect if the user controls the foot
to impact the ground earlier or later than the desired position,
which reflect the effectiveness of performance. A small distance
means the user can perform effectively and reduce the risk of
touching obstacles bymistake when specifying leg placement. The
results are filtered out if the distance is larger than 5cm, which
means the user fails to reach the target or impacts the ground too
early before reaching the target. If a user fails more than five times
on either glove, all the data on both gloves from that user will be
excluded. There are ten users failing less than five times, whose
average time and average distance are recorded.

2.5 Comparing JAM and TPM Gloves
2.5.1 Precision
The result of precision test for index finger is shown in Table 1.

The potentiometers of Glove one have lower standard
deviation values and lower mean errors than the flex sensors
of Glove 2, which means that Glove 1 may be more precise and
reliable. However, the flex sensors are lighter and easier to
integrate into wearable devices in field applications. Therefore
we performed other tests to show that the precision of Glove 2 is
sufficient for this application.

FIGURE 5 | Glove 2 is designed for Tip Position Mapping (TPM) (A) The design consists of (1) Elastic knit band with Velcro (2) 3D printed base. (3) 3D printed
dactylus 1. (4) 3D printed dactylus 2. (5) Flex sensors (Adafruit Short Flex Sensors 25kΩ - 100 kΩ) (6) Slides (7) 3D printed ring (8) Finger strap (B) The user is shown
wearing the device such that tip motion is a result of MCP, PIP and DIP flexion.
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2.5.2 Interaction Efficiency
Glove 2was better thanGlove one in both time anddistance, suggesting
that TPM is overall more intuitive for users. As shown in Figure 7, all
users consume less time when operating Glove 2 (TPM). This suggests
that TPM is more promising in reducing mental demand and effort.

Most of the users, except two of them, can get closer to the goal with
Glove 2. This suggests that for most users, TPM is better than JAM for
performance overall, despite the fact that the sensors onGlove 2 are less
precise. In summary, Glove 2 (TPM) ismore user-friendly and effective
in specifying leg placement for a hexapod robot.

FIGURE 6 | (A) An operator controls a simulated robot leg to reach a target position on the simulated ground (B) Simulation environment for interaction efficiency
test.

TABLE 1 | Results of precision test for index finger.

Reliability Test Glove 1 Glove 2

Position Sensor Std. Dev.(°) Mean Error
(°)

Std. Dev.(°) Mean Error
(°)

A Sensor 1 0.4 0.3 2.4 2.0
Sensor 2 0.7 0.6 8.6 6.8

B Sensor 1 0.5 0.4 1.8 1.5
Sensor 2 0.5 0.4 5.7 5.0

FIGURE 7 | Result of interaction efficiency test.
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2.6 TPM Evaluation Methods
2.6.1 Task Set-Up
To verify the HHCI, a task is carried out in Webots simulation, as
shown in Figure 8. In the task, the most experienced operator
needs to control the robot walking through a straight lane with
white stripes as obstacles. Each obstacle is 5 cm in length. The
lane is divided in 2 sections, with five obstacles to avoid in each.
The first part has a lower obstacle density while the next part has a
higher obstacle density. The goal is to avoid stepping on the
obstacles during locomotion control. Every contact with the
obstacles is counted. During manual locomotion control, only
the camera display windows are shown to the operator, as show in
Figure 9, so that the operator can observe the environment and
the robot movement in a first-person view instead of a global
perspective.

2.6.2 HHCI for Tripod Gait
Here our HHCI enables manual control of a tripod gait, as shown
in Figure 3. The movement of LF is controlled by the movement
of index finger while the other two legs in Tripod1 (LB and RM)
follow the movement of LF. The LM is controlled by middle
finger while the other two legs in Tripod2 (RF and RB) follow the

movement of LM to keep body balance and avoid slipping on the
ground. All the foot tips in the same tripod share the same vertical
position and horizontal velocity. The operator only needs to use
two fingers to control the robot locomotion. Thus, the operator
can focus on locomotion control and environment analysis
without being distracted by finger coordination and robot
balance. According to the interaction efficiency test, TPM has
better efficiency. So, TPM glove is used by an experienced
operator to control the locomotion of the hexapod robot
during the test. Thus, the third and fourth fingers of the user’s
hand are not used here. In future work, the five fingers of the hand
could be used in different configurations to control the six legs of
the robot in different modes.

Fingertip positions (xi, yi) (i = 1, 2), the corresponding foot tip
positions (Xi, Yi) are defined as the following.

X1 Y1

X2 Y2
[ ] � k

x1 y1

x2 y2
[ ] + δx1 δy1

δx2 δy2
[ ] (1)

k is the scaling ratio, a positive and real constant depending on the
glove’s finger size. k equals to the ratio between the robot leg
length and the glove’s finger length. (δxi, δyi) form position
adjustment vectors to counteract the displacement between the
glove and the operators hand.

The inverse kinematic equations for left side legs are

αi � π

2
− arctan

Xi

Yi
− arccos

X2
i + Y2

i + L2
1 − L2

2

2L1

�������
X2

i + Y2
i

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ i � 1, 2( )

(2)
βi � π − arccos

L2
1 + L2

2 −X2
i − Y2

i

2L1L2
( ) i � 1, 2( ) (3)

αi are the angles of the knee joints. βi are the angles of the ankle
joints (Xi, Yi) are the foot tip positions relative to the knee joints.
L1 is the length of robot tibia. L2 is the length of robot dactyl. Since
the right-side legs are bending opposite to the left legs, foot tip
positions for the right legs relative to the knee joints in inverse
kinematic equations should be (−Xi, Yi) to keep the right legs
moving in the same direction and velocity as the left legs.

During locomotion control, the operator will first predict the
obstacle’s distance through the obstacle’s position in the camera
view. One step is divided into two phases, stance and swing.
Swing distance is the horizontal distance that the foot tip passes
relative to the robot body when it swings in the air. Stance
distance is the horizontal distance that the foot tip passes
relative to the robot body when it contacts the ground. The

FIGURE 8 | Simulation environment set-up.

FIGURE 9 | The front and back camera views of the robot.
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step size of the robot is equal to the stance distance. The operator
will adjust the swing distance and stance distance to avoid
stepping on the obstacle. The operator will decrease the swing
distance and put the foot tip to a closer position if the obstacle’s
near edge is close to the predicted footfall position. If the obstacle
is close to the robot and the far edge is close to the predicted
footfall position, the operator will take a larger step to go over the
obstacle.

2.6.3 Comparative Experiment Set-Up
A group of fixed gaits is set as for baseline comparison in the
experiment groups. Three different step lengths for fixed gaits are
tested. For fixed gait, the larger the step length is, the less chance it
will have to contact the obstacles because the total contact with
ground is reduced. The fixed gaits step lengths are set to be 10 cm,
15 cm and 20 cm to reduce the contact as much as possible. To
make sure results are robust to initial conditions, the initial
distance from the robot center to the first obstacle’s near edge
is sampled randomly from 27.5 cm to 57.5 cm for each step
length.

To further compare the obstacle avoidance, a camera-based
autonomous gait is designed (Jouaiti and Henaff, 2018; Lee et al.,
2017; Sun et al., 2017; Shaw et al., 2019). The input visual
information is exactly the same as the camera view provided
to the operator. To make the obstacle detection mechanism
similar to the human operator, only one camera per side is
used to detect the obstacles distance, rather than doing stereo
visual depth perception (Howard, 2008). When the obstacle is
recognized, its near edge and far edge will be located on the
camera image, as show in Figure 9. The vertical pixel position on
the image has a corresponding angle of view. Using the view
angle, camera angle and the height of the robot, the obstacle
distance can be detected.

Xo � Hr + Yc( )tan Ψ − arctan
PV − 2Po( )tan Φ

2

PH
( ) (4)

Xo is the horizontal distance between the obstacle and the
center of the robot’s body. Hr is the robot body height. Yc is the
vertical position of the camera in the robot’s body frame. Ψ is the
pitch angle of camera. PV is the camera’s maximum pixel number
in the vertical direction. PH is the camera’s maximum pixel
number in the horizontal direction. PO is the obstacle’s pixel
position in the vertical direction. Φ is the camera’s field of view.

The strategy of the autonomous gait is modeled after the
manual control strategy. When there is no obstacle in front of the
legs, the robot will take steps of fixed swing distance and fixed
stance distance. When obstacles are detected in front of the robot
leg, the robot will predict the obstacle’s position relative to the
body center when the swinging foot contacts the ground. The
swing distance will be changed to avoid stepping on the obstacles,
mimicking strategy in manual control. The swing distance is
determined by the predicted obstacle distance. As shown in
Figure 11 and Figure 12, if the near edge of the obstacle is
close to the original contact position, the robot will decrease its
swing distance from S0 to S1 to take a smaller step. Determined by
the obstacle distance, S1 is smaller than the obstacle distance to

keep a safe distance (1 cm 3 cm) from the obstacle. The
subsequent step’s support polygon will be shifted backward
relative to the body. The robot will go over the obstacle in the
next step. If the far edge of the obstacle is close to the original
contact position, the robot will increase the swing distance from
S0 to S2 to go over the obstacle. The subsequent step’s support
polygon will be shifted forward relative to the body. S2 is larger
than the obstacle distance to keep a safe distance from the
obstacle. To keep the velocity constant and avoid slipping, the
robot only adjusts the swing distance without changing its stance
distance (S0). In other words, the step length of the robot is
constant. In the experiment, two different stance distance (S0) for
camera-based autonomous gait are tested. Due to the work space
of the robot, the step lengths for autonomous gait are set to be
8 cm and 10 cmwhile the maximum swing range for the foot tip is
±10 cm. The trajectories of foot tips and obstacles relative to robot
body in tripod one during camera autonomous gait are shown in
Figure 12.

3 RESULTS

3.1 Comparison of TPM With Autonomous
and Fixed Gaits for Obstacle Avoidance
For both Low Obstacle Density Area and High Obstacle Density
Area, the fixed gaits have the most Number of Obstacle Contacts
(NOC), as shown in Figure 13. The average NOC, marked by the
cross marker in the box-plot, decreases when step size is
increased. This is expected because the fixed gaits are “blind”
to obstacles and larger steps impact the ground less often.

The results of camera-based autonomous gait are much better
than the results of fixed gait, especially in the Low Obstacle
Density Area. Compared with the 10 cm fixed gait, the average
NOC is reduced by 97% in the Low Obstacle Density Area. While
ideally, we want to eliminate all obstacle contacts, (NOC = 0),
impacts with the ground cause perturbations in pitch angle which
can lead to errors in observed obstacle distance, as shown in
Figure 12 from 2 to 3s. To avoid contact resulting from distance
error, tolerances are added to the autonomous gait, represented
by the radius of the circles in Figure 12. The addition of an IMU,
vibration dampers or signal filtering would likely help, however
not all autonomous gaits will have these (Avram et al., 2015).

The performance of autonomous gait in the High Obstacle
Density Area is not as good as that in Low Obstacle Density Area.
Take 10 cm camera-based autonomous gait as an example, the
average of NOC increases to three while the maximum NOC
increases to 6. The increase in NOC are mainly caused by the
misjudgment when there are multiple obstacles in one camera
view. The controller is only designed to detect the distance of the
nearest obstacle, which leads to possible contact with the
following obstacles. While a more complex autonomous gait
could be written to have additional layers of control to handle
these situations, testing each possible obstacle combination case
can be time-consuming.

The results of TPMHHCI gait shows that it is an effective way
to avoid obstacles. In the Low Obstacle Density Area, the NOC
ranges from 3 to 5, which is much better than blind walking but
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not as good as camera-based autonomous gaits. In the High
Obstacle Density Area, the NOC ranges from 2 to 3, which is close
to or even better than the results of camera-based
autonomous gait.

4 DISCUSSION

4.1 Conclusions
This paper introduces a new control interface for hexapod robots
using hand-to-robot mapping to specify leg placement (Figure 1).
A simplified real time simulation is built in MATLAB and two
control gloves are designed (Figure 2, Figure 3, Figure 4). 15 lab
staff are tested with both gloves to determine which kind of
mapping method is more intuitive (Figure 5). Glove 2, the tip
position mapping glove, is more intuitive in specifying leg
placement (Figure 6). To show that this interface can allow
users to specify foot positions, a simulation is set up in
Webots (Figure 7), in which robots need to use sideways
walking (Figure 8) to walk along a straight lane while
avoiding bar-like obstacles. In the simulation, manual gait is
tested with Glove 2 (Figure 10, Figure 9). To show the worst case
scenario, gaits with fixed step size are shown for comparison. A
camera-based autonomous gait is designed as to show the
minimum computer controlled results (Figure 11, Figure 12).
The result (Figure 13) shows that both the autonomous gait and
the manual control are effective ways to adjust step size to avoid

obstacles. Manual control has advantages over camera-based
autonomous gait when there are multiple obstacles on one
side (High Obstacle Density Area in Figure 13). This
demonstrates that in a situation in which there is no
autonomous gait available, a manual control scheme is likely
to be comparably accurate in the sagittal plane.

4.2 When to Use HHCI
The difference in manual control performance between the Low
Obstacle Density Area and the High Obstacle Density Area
(Figure 13) mainly results from the distribution of the
obstacles (Figure 8). In the Low Obstacle Density Area, the
obstacle spacing is close to the body length. Thus, there are
situations in which both monitors have obstacles displayed.
When handling multiple obstacles on both sides, the human
operator has to focus on both of the camera monitors, trying to go
over obstacles on one side and avoid touching obstacles on the
other side. To avoid both obstacles, stance legs (controlled by one
finger) and swing legs (controlled by the other finger) must be
coordinated. During long-distance walking while focusing on two
monitors at the same time, the operator’s attention cannot always
be highly concentrated. Inattention can lead to mistakes in
judgment or operation, and increases the NOC in glove
controlled locomotion. In contrast, in the High Obstacle
Density Area, multiple obstacles only appear on the same side
of the robot. Thus, the operator only needs to look at one camera
monitor and focus on the control of the legs on that side. With

FIGURE 10 | The work flow of the TPM glove control interface.
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reduced workload and less distraction, the operator can have
more accurate control in obstacle avoidance.

Thus, as expected HHCI for tripod gaits is likely to be easiest to
use when focusing on one leg’s placement at a time. Thus, for an
application such as munitions response (SERDP, 2022) in which a
robot might be exploring an area with infrequent objects of
interest until the target object of interest is found, the
autonomous gait might be used for much of the locomotion,
and then as the robot gets closer the user can switch to HHCI.

FIGURE 11 | In the camera-based autonomous obstacle avoidance
gait, the computer modifies the default swing distance S0 to a smaller swing
distance S1 or larger swing distance S2 as needed to avoid obstacles shown in
the bottom image. The stance distance (step length) is always the same
as the default stance distance S0. The detected obstacle position is the
observed position at the beginning of the swing phase, the predicted obstacle
position is where the obstacle will be relative to the robot at the end of the
swing phase.

FIGURE 12 | Trajectories of foot tips relative to the robot body in tripod one during camera autonomous gait.

FIGURE 13 | Result of different gaits.
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Once at the object of interest, the robot would be positioned such
that rear leg placement is not as critical and operator can focus on
how actions affect front legs.

In addition, more adjustments could be added. Potentially,
more could be done in the computer visualization: rather than
two videos stacked on top of each other, one view could be
presented with both legs overlaid. The use of additional fingers for
different legs, or switchable modes could improve performance.

Nonetheless, in all cases, HHCI is an improvement over fixed
gaits, and would be a good candidate when autonomous terrain
categorization is not available.

4.3 Future Interface Development
There are two major limitations to the gloves presented here: lack
of steering and haptic feedback. These will be the basis of
future work.

Steering is essential to controlling a robot in a three
dimensional environment. Adduction/abduction at the MCP
can be determined with additional sensors. Now we have
demonstrated the TPM method in 2D, we can determine hip
angle of the robot using the same approach. Alternatively, since
frequent adduction and abduction movement can be
uncomfortable, it would also be possible to use rotation at the
user’s wrist to control steering direction. It is also possible to use a
secondary joystick for steering, a method we have implemented in
order to play a search-like game.

The present control interface only provides vision feedback to
the operator without any haptic feedback. Visual feedback can be
improved to manage attention following the principles of
interaction efficiency (Goodrich and Olsen, 2003).
Alternatively wearable Virtual Reality devices could be used.
Finally, if haptic feedback is applied (Delft Haptics Lab, 1994;
Barros et al., 2015; Hoshino et al., 2018; Huang et al., 2019;
Protocom, 2022), the user may be able to “feel their way” through
environments with limited vision or feel objects buried in sand.

Furthermore, future work can explore different ways to use all
five fingers on the human hand. Because we showed that two
fingers alone can control the two tripods of walking gait, we can
envision switching between modes for walking (in which all legs
move) and in-place motions (in which individual legs move, but
stance legs stay planted). In the future, the ideal control interface
may be a hybrid of manual and autonomous control, allowing the
user to correct AI’s walking behavior in real time. Furthermore,
the user’s inputs may be able to be compared with programmed
gaits to enable gaits to adapt to user preferences.

Exploring these avenues will enable next steps in evaluation.

4.4 Future Evaluations
The NASA-TLX (Hart and Staveland, 1988) (Hart, 2006) is a
standardized study to compare interfaces, which could be applied
to compare our approach with other interface types, as shown in
Figure 2. There are six dimensions (mental demand, physical
demand, temporal demand, effort, performance and frustration
level). Our hope is that because only finger motions are required,
that the effort will be less and themental demand will be comparable
to that of using a joystick. For tasks such as placing a foot on a
specific goal, we would expect less frustration, mental and temporal

demands than scale model control. This can be evaluated with larger
datasets for simulated and physical robots, where intervention is
more likely to be required.

As human robot interfaces are being developed, wearable and
intuitive smart devices can be important because they change the
robot from a tool to bewielded to an extension of the user’s own body.
This work shows that we can take advantage of similarity between
human hand anatomy and robot design, to create a working interface.
It is our hope that this will enable users without extensive robotics
training to quickly learn to control robots as needed. In challenging
and distracting environments, such as underwater or field work,
lightweight one-hand interfaces are likely to be especially valuable.
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